Active Set Identification for Linearly Constrained Minimization Without Explicit Derivatives

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Active Set Identification for Linearly Constrained Minimization Without Explicit Derivatives

We consider active set identification for linearly constrained optimization problems in the absence of explicit information about the derivative of the objective function. We begin by presenting some general results on active set identification that are not tied to any particular algorithm. These general results are sufficiently strong that, given a sequence of iterates converging to a Karush–K...

متن کامل

Active Set Identification without Derivatives

We consider active set identification for linearly constrained optimization problems in the absence of explicit information about the derivative of the objective function. We focus on generating set search methods, a class of derivative-free direct search methods. We begin by presenting some general results on active set identification that are not tied to any particular algorithm. These genera...

متن کامل

Implementing Generating Set Search Methods for Linearly Constrained Minimization

We discuss an implementation of a derivative-free generating set search method for linearly constrained minimization with no assumption of nondegeneracy placed on the constraints. The convergence guarantees for generating set search methods require that the set of search directions possesses certain geometrical properties that allow it to approximate the feasible region near the current iterate...

متن کامل

Pattern Search Methods for Linearly Constrained Minimization

We extend pattern search methods to linearly constrained minimization. We develop a general class of feasible point pattern search algorithms and prove global convergence to a KarushKuhn-Tucker point. As in the case of unconstrained minimization, pattern search methods for linearly constrained problems accomplish this without explicit recourse to the gradient or the directional derivative of th...

متن کامل

Linearly Constrained Nonsmooth and Nonconvex Minimization

Motivated by variational models in continuum mechanics, we introduce a novel algorithm for performing nonsmooth and nonconvex minimizations with linear constraints. We show how this algorithm is actually a natural generalization of well-known non-stationary augmented Lagrangian methods for convex optimization. The relevant features of this approach are its applicability to a large variety of no...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Optimization

سال: 2010

ISSN: 1052-6234,1095-7189

DOI: 10.1137/08073545x